

Miles Free – Director of Technology and Industry Research X Technical Regulatory Quality

Tempering Steel

Degrees Farenheit	TEMPER COLORS	Degrees Centigrad
700		371
660		349
620		327
580		304
540		282
500		260
460		238
420		216
380		193

In steel, tempering is reheating hardened steel to a temperature below the lower critical temperature for the purpose of decreasing hardness and increasing toughness.

(The lower critical temperature is the temperature of the austenite-to-pearlite eutectoid transformation. In steels below this temperature, austenite does not exist.)

Tempering is sometimes applied to normalized steels for similar reasons: It decreases hardness and improves toughness.

The chart above shows the colors that are elicited by tempering a 0.95-percent carbon content steel at the temperatures shown.

(For example, think about a drill rod.)

All Craftsman's Cribsheets are available for viewing and download at short.productionmachining.com/cribsheets.