Some things you want to have bubbles, some you don’t.

Usually, Bubbles are good.

In beermaking, yeast consumes the sugars in the wort and convert them into CO2 gas bubbles- carbonation.
In steel making the main reaction is the combination of Carbon in the melt with Oxygen to form a gas. At the high temperatures involved, this gas is very soluble in the molten bath.
If the Oxygen that is available for this chemical reaction isn’t completely removed before the steel is cast the gases will continue to be forced out of the melt during solidification, resulting in porosity in the steel.
Bubbles and where the gas goes can be important in your steel part.

In order to control the evolution of gas, chemicals called deoxidizers are added to the steel. These chemicals, Silicon or Aluminum, Vanadium, Columbium, Niobium scavenge the available oxygen in the molten steel, react chemically to form solid oxide particles dispersed throughout the steel, rather than bubbles of Carbon Dioxide.
The amount and type of deoxidizer added determines the type of steel. If sufficent deoxidizers are added, no gas is evolved from the solidifying steel, and the steel is said to be “killed.” The ingot drawing labelled number 1 shows a fully killed (deoxidized) steel showing only a shrinkage cavity, and no bubbles or porosity. ( This shrinkage cavity would be cropped off in normal rolling practice.)
Because gas is still evolving, this beer is NOT KILLED.

Killed steel has more uniform chemical composition and properties than rimmed, semi-killed, or non-killed steels, and generally less segregation. The uniformity of killed steel and and its freedom from porosity makes these steels more suitable for critical components and for applications involving heat treatment.
Killed steels generally contain 0.15-.35 weight percent Silicon as a deoxidizer, and may contain  some of the other elements as mentioned above. These other elements may be used as deoxidizers or as grain refiners.
Steel grades with a Carbon maximum of 0.30 weight % and above, and all alloy steels are typically provided as “killed steels.”
Free machining steels such as 12L14, 1215, and some 11XX series steels are not “killed” with Silicon, Aluminum, etc., due to their deleterious effects on tool life and machinability. The high amounts of Manganese  in these steels form Manganese Sulfides to promote machinability, and also the Manganese scavenges excess Oxygen, preventing  evolution of CO2.
Killed steel is specified so your critical parts won't have bubbles in them.

Killed steel- for critical parts. Non-killed beer for critical  after work down time.
Beer Bubbles Photo Credit
Ingot scan from a handout in my files originally after Making Shaping and Treating of Steel.
 Beer Head Photo Credit
Bread with Holes

While Austenitic Grain Size is a result of chemistry (composition), the changes that it evokes in our process are a result of material structure and properties, not just the chemical ‘ingredients.’
Steel that is fully deoxidized and grain refined is more sound, less susceptible to cracking and distorting, and more easily controlled in heat treat. Well worth it in final performance compared to the machinist’s increased tooling costs.
 Here are 5 Ways Austenitic Fine Grained steels can affect your shop:

  1. Poorer Machinability than Coarse Grained Steels. (The hard oxides and nitrides resulting from deoxidation and grain refinement abrade the edge of tools and coatings- this is one reason that you go through more tooling on Fine Grained Steels.)
  2. Poorer Plastic Forming than Coarse Grained Steels.
  3. Less Distortion in Heat Treating than Coarse Grained Steels
  4. Higher Ductility at the same hardness than Coarse Grained Steels
  5. Shallower Hardenability than Coarse Grained Steels.

This is a look at Austenitic Fine Grain Steel.

Fine Austenitic Grain Size is a result of  DELIBERATELY ADDDING grain refining elements to a heat of steel. Because these grain refining elements have been added, the steel has a “Fine Austenitic Grain Size.”
In order to make steels with this Austenitic Fine Grained Structure, the steel is first deoxidized , (usually with  Silicon) and then Aluminum, or Vanadium or Niobium are added. Aluminum, Vanadium, and Niobium are called grain refiners.
 After  the Silicon has scavenged most of the Oxygen out of the  molten steel, the grain refiner is added. (In this post I’ll stick with Aluminum as the example.) The added Aluminum reacts with Nitrogen in the molten steel to form Aluminum Nitride particles. These tiny particles precipitate along the boundaries of the Austenite as well as with in the Austenite grains. This restricts the  growth of the grains.
Because the deoxidation and grain refinement  create hard abrasive oxide and nitride particles, they machine and process differently than coarse grained steels.
Fine Austenitic Grain Size appears on the material test report as an ASTM value of 5 or greater. Values of 5, 6, 7, 8, or “5 and finer”  indicate that  the material is Austenitic Fine Grained. Typically 7 or 8 was  reported for the Aluminum  Fine Grain steels that I certified.
The methods for determining Austenitic Grain Size are detailed in ASTM Standard E112, Standard Test Methods for determining Average Grain Size.
To get the Coarse Austenitic Grain Size Story, see our post here.